昨天想通过给外甥家俩孩子学古诗测试ragflow,从GitHub上下载了一个高星评价的数据集,解压缩后有12G大小。
从中选择了一个全唐诗文件夹,将里面的json文件导入到资料库中,因为使用了外部免费内嵌服务器,解析过程有些漫长。
数据解析完成测试,随手打了一个关于李白的《静夜思》,qwen2.5的7B模型回答的也飞快,本想退出系统收兵,突然感觉哪里不对劲,一看,里面居然是“举头望山月”,而不是记忆里的“举头望明月”。再看,第一句也不是“床前明月光”,而是“床前看月光”。
第一反应是资料库有问题,便问了一句“举头望明月”出自哪一首诗。结果不问还好,这一问把qwen的劣根性彻底暴露,给我回了一个“出自唐代诗人王之涣的《登鹳雀楼》”,还一本正经列出全诗后,加上了举头望明月,低头思故乡。
气的我在问题后面加上了“根据资料库内容,别胡说八道”,这回才老老实实回答“知识库中未找到明确包含这一完整诗句的作品”。
又换到deepseek V3,其回答就全面的多,首先承认未找到“举头望明月”,然后解释现代流传版本多是如此。并建议查阅更多完整的《全唐诗》版本或其他文献。
由此看,资料固然是rag的基础,AI模型同样具有保驾护航的重要性。